

Biosolids & Renewable Energy Innovation Technology Seminar

Hydrothermal Processing in Wastewater Treatment

James Oyler President Genifuel Corporation November 2017 jim@genifuel.com

Why Hydrothermal Processing?

- Solids Management is a critical issue in wastewater treatment and a source of significant cost
- Hydrothermal Processing addresses this issue by converting solids to renewable fuels
- Eliminates solids disposal cost and generates significant revenue
- Renewable fuels offset fossil fuels and associated new GHG

Why HTP

Background

- Process developed over 30 years by the US Dept. of Energy at Pacific Northwest National Lab
- Licensed exclusively to Genifuel
 - Both PNNL and Genifuel have contributed patents
- Over 100 feedstocks tested
 - Focus is now on wastewater solids

Technical Concept

- HTP is similar to the formation of fossil fuels, but in minutes rather than millions of years
- Oil is similar to fossil crude but generally lower viscosity

Brontosaurus by Charles R. Knight, 1897

Hydrothermal Processing Overview

- Hydrothermal Processing (HTP) uses temperature and pressure to efficiently convert wet organic matter to biocrude oil and methane gas in less than an hour
 - Captures >85% of feedstock energy; uses <14% of fuel energy produced to run the system
 - $T = 350^{\circ}C; P = 200 bar (20 MPa)$
- Eliminates biosolids and reduces operational costs
 - Significantly reduces GHG emissions vs. alternatives
- Accepts any type of wastewater solids—primary, secondary, both together, or post-digester biosolids
 - Can also co-process food waste and other wastes

Hydrothermal Overview (cont.)

- Unique process step precipitates phosphorus in the form of a dense clay-like solid; 98-99% removal
 Converts to fertilizer in same way as phosphorus ore
- Effluent water clear and biologically sterile
 - COD <60 mg/L, mostly small acids, e.g. formic, acetic
 - Large molecules destroyed, e.g. pharmaceuticals, estrogens, pesticides, fire retardants, etc.
 - Contains N as ammonia; ongoing R&D to recover
- Systems or products often eligible for incentives
- Solids management, P capture, valuable products, lower emissions, high efficiency, small size and incentives provide value to the plant owner

Genifuel

An Installed HTP System and Outputs

HTP Oil

Effluent Water

Wastewater Process Flow with Hydrothermal Processing

System is Well-Characterized: Mass Flow Diagram for 1 t/d dry (equivalent) solids*

*All units metric unless shown otherwise. Mass unit of t/d = 1000 kg/day

Comparison to Other Technologies

Comparison to Other Technologies (cont.)

TECHNOLOGY	COMPARISON
Anaerobic Digestion	 AD app. 2x footprint of HTP HTP one hour vs. 20-30 days for AD HTP 80% to 120% more fuel energy AD leaves 40-50% of feedstock as biosolids; HTP none
Thermal Hydrolysis (e.g. CAMBI)	 Pre-process for AD, not a conversion process Increases yield and decreases time for AD Increased methane needed for CAMBI, little net gain
Incineration	 Eliminates solids Limited resource recover—some heat and some ash Expensive to eliminate regulated air emissions
Pyrolysis or gasification	 Very high temperature can create reliability problems Low yield and low quality if pyrolysis oil is produced Produces syngas rather than methane—lower specific energy

The LIFT Study of HTP by WERF

- The LIFT study produced a 185-pg. third-party report by Leidos, Inc.
- The report was reviewed by utilities and industry experts...

Genifuel Hydrothermal Processing Bench-Scale Technology Evaluation Project

Available free from WERF

... and recommended installation at a utility

Continuing Improvements in HTP

• Pacific Northwest National Laboratory, which ran the LIFT test, ran additional tests with Detroit sludge, and installed major new test equipment

Medium-Scale HTP System

Oil Upgrading System — Genifuel

Results from Wastewater Sludge Tests*

Measurement	Value
Oil as % feedstock solids (mass/mass)	35% to 45%
COD of effluent water after gasification	<60 mg/L
Feedstock carbon recovered into fuels	85%
% of output fuel energy needed to run the system	14%
Siloxane and H ₂ S levels in CHG gas	Negligible
Ammonia level in CHG water, before removal	1% to 1.5%
Complex molecules remaining (pesticide, pharma)	Negligible
Operating conditions	350°C, 200 bar
Preferred solids concentration	20% solids in water; range 15 to 25%

* Sludge samples from Metro Vancouver and Detroit

Metro Vancouver's Interest in HTP

- After working on LIFT, Metro Vancouver saw the HTP pilot project recommendation as a way to gain experience with solutions to key issues
 - Rising cost of solids management and increasing distance to disposal sites
 - High cost of installing AD at smaller sites
 - New technology for future system upgrades to improve process and reduce cost
 - A pathway to meet environmental goals for lower emissions and greater energy recovery

Metro Vancouver's (MV) Project

- The MV system will process 10 metric t/d of sludge at 20% solids
- Serves satellite site with population of 30,000
- Initially oil only (875 L/d), with gas later
- Commission late 2018

Annacis Island System Site

Analysis of MV Project—HTP vs. AD

MEASURE	VALUE
Footprint	HTP is 44% of AD
GHG Reduction	HTP reduces GHG 3X as much as AD
20-year NPV* Cost	HTP is 55% of AD Cost

***NPV = Net Present Value**

HYPOWERS Is the Next New Project

- HYPOWERS is a two-phase project partly funded by Dept. of Energy for demonstration with wastewater
- Size is planned at 20 metric tons/day, or 60,000 pop.
- Host facility is Central Contra Costa Sanitary District ("Central San"), east of San Francisco

Central San System Site

About Central San

- 145 Sq. Mile Service Area
- >480,000 Population Served
- >1,500 Miles of Sewer
- 19 Pump Stations
- 1 Treatment Plant
- Average Flow: 32 Million Gallons Per Day (MGD)
- Solids: ~200 Wet Tons Per Day

Central San Embarked on a Comprehensive Wastewater Master Plan

Aging Infrastructure

Capacity

Regulatory

Sustainability

Existing Solids Handling System

- 1980s Waste to Energy
- Furnaces in Good Condition
- Support Equipment & Building Requires Upgrades
- Emissions Controls Improvements Needed
- Regulatory Risks
- Plans to De-couple Waste Heat Recovery System from Secondary Aeration Blowers

Solids Handling Goals

- Continue with Furnaces
 - Near-Term Upgrades
 - Address Vulnerabilities
- Plan for Furnace Replacement (Possibly in Phases)
 - Strive for Net Zero Energy
 - Reduce Greenhouse Gas
 Emissions
 - Embrace Innovation

Central San Process Flow with Hydrothermal Processing

The HYPOWERS Team

Equipment Installation for HTP

- HTP system is skid-mount and factory-built
 - Shipped to site by truck
 - May be containerized for sea shipment
- Site installation requires pad, utilities (electricity, water, drain), and cover (roof or building)
- Need supply of sludge or biosolids
 - Sludge can be delivered by pipe, biosolids likely not
 - Sludge will need to be dewatered to 20% (range 15-25%)
- Need disposition of effluent water and storage tank for oil (weekly pickup)
- Odor control simple because very small amounts

Conclusion

- Only hydrothermal process with both liquefaction and gasification in same system
- Optimized process produces high quality outputs
 - Oil—no char, low oxygen
 - Gas—H₂S and siloxanes below detection limit
 - Water-no organisms or pharmaceuticals
- Unique process step automatically captures phosphorus for direct conversion to fertilizer
- Successful scale-up now at small commercial size
- More than \$50 million invested in R&D by both government and private parties
- All IP owned or licensed exclusively to Genifuel

Hydrothermal Processing in Wastewater Treatment

Thank you!

Additional Slides

James Oyler, President—Brief CV

- Built and managed energy practice for Booz, Allen & Hamilton, worldwide consultants (1972-1976)
- Sector President for Harris Corporation, a Fortune 500 Company (1976-1993)
- President and CEO for E&S, a NASDAQ technology company sold to Rockwell Collins (1994-2006)
- BSEE 1967, M.A. Cambridge University (UK) 1969, Officer US Army 1972, Certified Mgmt. Accountant
- 24 issued or pending patents

Conclusion

- Successful testing with wastewater solids has created significant learning for equipment design, expected performance, and cost reduction
- Critical next step is to demonstrate continuous 24/7 operation at operating wastewater utility
 - Current longest operation is app. three months
 - Planned projects at MV and Central San
 - Sharing of data and results with wastewater industry
- Will need new investment for operations
- Would like utility partner in UK/Europe for demonstration plant

System is Well-Characterized: Energy Flow Sankey for 100 kg/d dry solids

Solubility of Calcium Sulfate and Calcium Phosphate in Water

Slide 33