

Energy, Water, and Waste Management via Gasification of Wet Organics

January 2010

Overview of Gasification Process

- Catalytic Hydrothermal Gasification (CHG) is a wet process (up to 90% water) which produces natural gas in a single step
- Feedstock is any organic material made into slurry
- Reactions are fast (minutes) and complete (>99%)
- Process developed over 30-year period at Pacific Northwest National Laboratory (PNNL), a DOE National Lab
- Genifuel has licensed and improved the process

Energy from CHG Gas Production

- Gas produced is mostly methane and carbon dioxide (can remove CO₂, but not necessary)
- Gas can be used directly as a medium-BTU fuel in an engine or turbine designed for this gas
- With slight modification, can co-fire a diesel engine with a mix of this gas plus JP-8 or diesel fuel

- Engine can still run on straight JP-8 or diesel

- Engine can drive generator for electricity
- Hot water from gasifier can be re-used

Practical Methane Substitution

- Direct fuel offset with energy from methane up to 70% of fuel requirements
- Engine can revert to JP-8/diesel without modification
- Primarily controls modifications
- Been done before, but needs test with specific engines

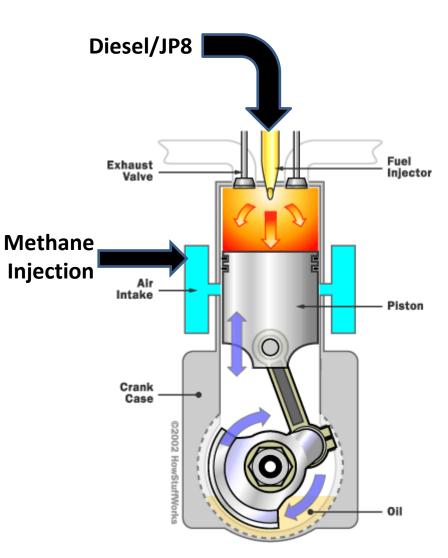


Diagram courtesy of Colorado State Engines Lab

Feedstocks

- Capture all food waste and latrine waste from base--a typical base yields a useful amount of engine fuel
- To get more engine fuel, augment the base waste by using locally-sourced biomass
 - Grass, straw, weeds
 - Rice waste, food processing waste
 - Aquatic material—algae, river lettuce, water hyacinths
- Prefer no woody material—too hard to make into slurry

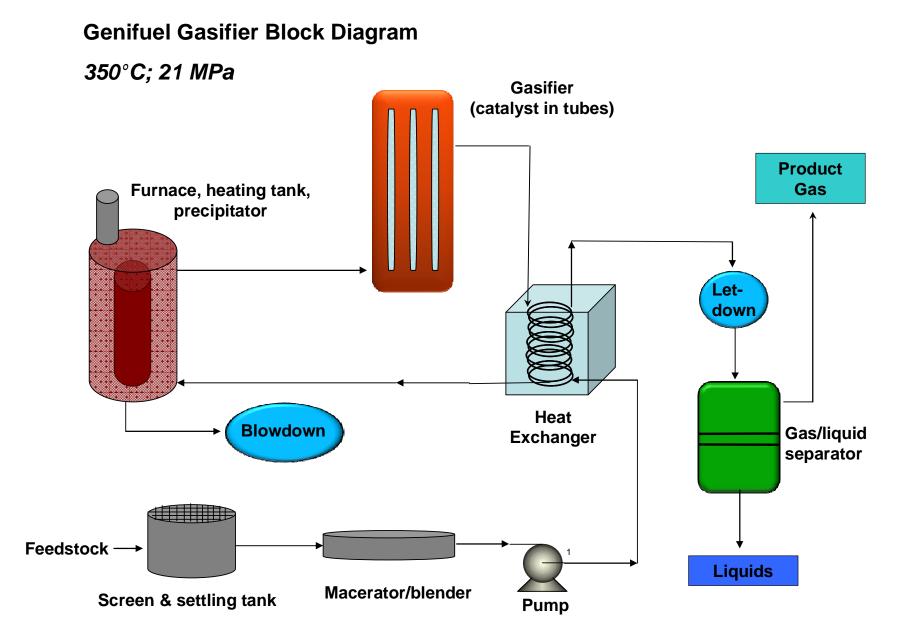
What A 10% Slurry Looks Like

Skid-Mounted Gasifier Unit

Trailer-Mounted Gasifier

Interior of Trailer-Mounted Gasifier

Algae in Large Quantities as Feedstock



CHG Gasifier Is Simple and Economical

- Feedstock is heated and pumped to 350°C (660°F) and 21MPa (3,000 psi)
- Output goes through heat exchanger to recapture energy by heating incoming feedstock
- Outputs are fuel gas, hot water, and a small amount of sterile sludge (like wet clay)
- System built with straightforward industrial construction--standard codes using stainless steel
- Catalyst is readily available

Simplified Process Diagram

Water Re-Use

- Water is completely sterile (has been heated under pressure to 660°F before cooling)
- Water will contain some salt (primarily sodium and potassium chlorides—table salts) and some ammonia
- Could easily be re-used for laundry or wash water
- Could also be used as potable water after running through a carbon filter, but probably not worth the "PR effect" from doing this

Energy Storage

- System can provide short-term energy storage
 - Feedstocks can be accumulated for short time (days) to gasify when fuel is needed
 - Gas produced can be stored in tanks (with slight compression for more economical storage)
- Longer-term energy "storage" can be achieved by scheduling local feedstock harvesting
 - Higher harvest when surge in fuel supply is needed
 - Slower harvesting at other times

Energy Cost for Renewable Natural Gas Compared to Biodiesel (Q4 2009)			
	<u>RNG</u>	<u>Algae B100</u>	<u>Soy B100</u>
COST BTU Content	\$12/MCF 1,020,000	\$30/gal 118,300	\$3/gal 118,300
COST/ 100,000 BTU	\$1.18	\$25.36	\$2.54
Note: 100,000 BTU is slightly less than 1 gallon equivalent Genifuel —			

Benefits and Conclusion

- Four important benefits
 - Produce electricity from wet waste
 - Waste management--essentially eliminate wet waste
 - Extend water supply by re-using water for washing
 - Provide capability for energy storage
- Use local biomass to greatly increase fuel production to generate electricity
- Quick to set up and get into operation
- Co-fuel gas with JP-8 or diesel; can still run engines with straight JP-8 or diesel if needed
- Suggest small-scale demonstration be set up

