

Renewable Natural Gas via Catalytic Hydrothermal Gasification of Wet Biomass

October 2009

Overview of Gasification Process

- Catalytic Hydrothermal Gasification (CHG) is a wet process which produces renewable natural gas in a single step
- Reactions are fast and quite complete
- Catalyzed by ruthenium catalyst
- Process developed over 30-year period at Pacific Northwest National Laboratory, a DOE National Lab
- Genifuel has licensed process

Bench-Scale Gasifier

Overview of Gasification Process (cont.)

- Catalytic Hydrothermal Gasification (CHG) is *not* the same as thermal pyrolysis gasification
 - CHG produces Renewable Natural Gas (RNG)—a mixture of methane with small amounts of hydrogen and ethane
 - Thermal pyrolysis produces syngas—a mixture of carbon monoxide and hydrogen
 - CHG feedstock is processed wet, in the form of a slurry of 5% to 25% solids

CHG Chemistry

Partial equations:

 $C_{6}H_{10}O_{5} + H_{2}O \rightarrow 6CO + 6H_{2}$ $CO + 3H_{2} \rightarrow CH_{4} + H_{2}O$ $CO + H_{2}O \rightarrow CO_{2} + H_{2}$

(steam reforming of carbohydrate)
(methanation)
(water-gas shift)

The overall stoichiometry is then:

 $C_6H_{10}O_5 + H_2O \rightarrow 3CH_4 + 3CO_2$

Note: Feedstocks contain many molecular structures, including carbohydrates, proteins, etc. The actual gas products will usually contain a small amount of hydrogen and ethane as well as methane and carbon dioxide.

CHG Gasifier Is Simple and Economical

• Feedstock is heated and pumped to 350°C and 21MPa (app. 20 atm/3,000 psi)

- Conditions are just below supercritical water

- Held briefly in filter tank to precipitate certain inorganics and liquefy feedstock
- Passes through fixed catalyst bed
- Output flows through heat exchanger (to heat incoming feedstock) and water/gas separator
- Dwell time is only a few seconds

Characteristics of CHG Process

- Works with almost any organic material, as long as it can be made into a water slurry
- Converts >99% of organics with most feedstocks
- No tars or oils, little ash
- Very efficient—almost all heat is recovered in heat exchanger to heat incoming feedstock
- Output is a directly usable medium-BTU fuel—
 62% natural gas and 38% CO₂ by volume
- Separate out CO₂ to get pipeline natural gas

Advantages of CHG Process

• CHG compared to anaerobic digestion (methane)

- Higher yields-greater conversion of organics
- No sludge left over
- Much, much faster
- Physically smaller

• CHG compared to pyrolysis (syngas)

- Lower temperatures
- Handles high water content easily with no drying
- Directly produces methane, with many uses

Feedstocks for CHG

- While any organic material can be used, aquatic biomass is ideal
 - Material is soft and wet, easy to make into slurry
- Can convert algae-oil "bottoms" after lipid extraction into additional fuel—no waste
- Other wet feedstocks are also good wastewater solids, animal waste
- Woody biomass is more difficult and expensive to prepare into slurry
 - High lignin content makes it harder to process

Aquatic Feedstocks

- Algae is a perfect feedstock, but with entirely different approach than oil producers
 - The goal is highest biomass production at lowest possible cost
 - Do not need or want monocultures of oil producers, simplifying growth in outdoor ponds
 - Want indigenous types which are large, robust, fast-growing, and easy to harvest--filamentous species are perfect
 - Usually mixtures of algae, cyanobacteria, diatoms
 - Can use marine algae

Cladophora or *Ulva* **"Nuisances" Perfect for Gasification**

Duckweed (non-algae)—Easy to Harvest

10% Slurry of algae, cyanos, duckweed

Resource Recovery

- Heat is recovered to heat incoming feedstock
- CO₂ is separated from product gas leaving product gas very similar to natural gas
- CO₂ dissolved in the condensate is recycled to the aquatic growth medium, accelerating growth of the biomass and reducing local emissions to nearly zero
- Other nutrients can be recycled

Energy Cost for Renewable Natural Gas Compared to Biodiesel (Q4 2009)			
	<u>RNG</u>	<u>Algae B100</u>	<u>Soy B100</u>
COST BTU Content	\$12/MCF 1,020,000	\$30/gal 118,300	\$3/gal 118,300
COST/ 100,000 BTU	\$1.18	\$25.36	\$2.54
		Genifuel —	

Status and Conclusion

- Engineering in progress for 2,000 m³/d pilot plant operational in Q2 2010
- Small commercial unit of either 4,000 m³/d or 8,000 m³/d will be installed by end of 2010
- Initial use will probably be for CNG-powered vehicles in urban areas
- Can also be used in combined-cycle electricity generation with conventional technology
- Compared to other biofuels, RNG is probably the cheapest and cleanest alternative available

