Wastewater Treatment, Energy, and Water Re-Use via Catalytic Hydrothermal Gasification

February 2010

Genifuel

Overview of Gasification Process

- Catalytic Hydrothermal Gasification (CHG) is a wet process (up to 95% water) which produces natural gas in a single step
- Feedstock is any organic material made into slurry
- Reactions are fast (minutes) and complete (>99%)
- Process developed over 30-year period at Pacific Northwest National Laboratory (PNNL), a DOE National Lab
- Genifuel has licensed and improved the process

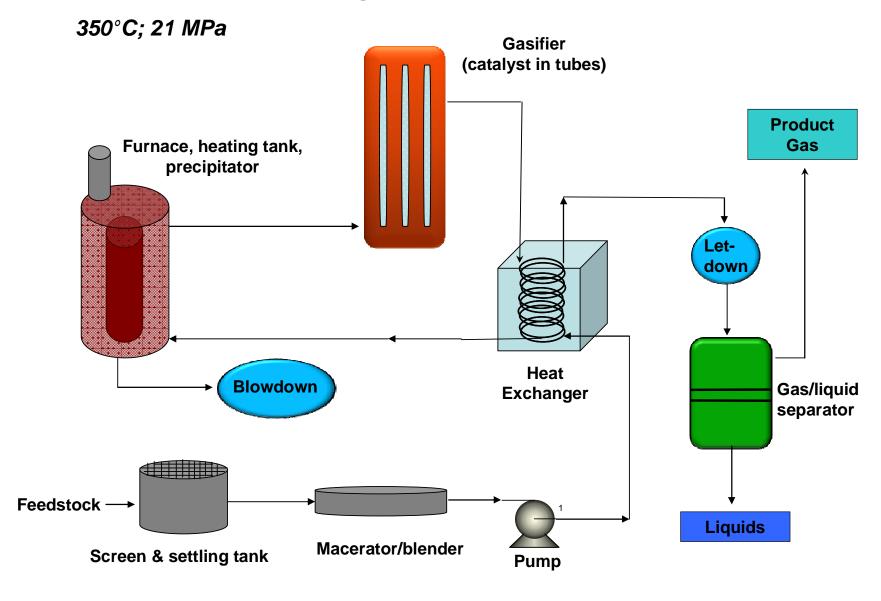
Energy from CHG Gas Production

- Gas produced is mostly methane and CO₂
- Gas can be burned directly as medium-BTU fuel, or can remove CO₂ for Renewable Natural Gas (RNG)
 - Medium-BTU is app. 620 BTU/cubic foot
 - RNG is app. 1020 BTU/cubic foot
- RNG can be inserted into pipeline and removed at a generator site to get renewable electricity credits
- Can use with existing natural gas generators

Wastewater Treatment

- Can locate at a municipal wastewater facility and gasify the waste solids
 - Can also locate at source of waste (e.g. food processor)
- Almost completely eliminates wastewater solids—gasifies >99% of organics, leaving only inorganics (typically around 13% of wastewater solids)
- Can simplify the wastewater treatment process and reduce the footprint of facilities
- Can handle sludge with solids content from 4% to 25%

Skid-Mounted Gasifier Unit



CHG Gasifier Is Simple and Economical

- Feedstock is heated and pumped to 350°C (660°F) and 21MPa (3,000 psi)
- Output goes through heat exchanger to recapture energy by heating incoming feedstock
- Outputs are fuel gas, warm water, and a small amount of sterile sludge (like wet clay)
- System built with straightforward industrial construction--standard codes using stainless steel
- Catalyst is readily available

Simplified Process Diagram

Genifuel Gasifier Block Diagram

Water Re-Use

- Water is completely sterile (has been heated under pressure to 660°F before cooling)
- Water will contain plant nutrients—fertilizer
 - Primarily nitrogen and potassium
- Perfect for re-use as irrigation water

Options for Wastewater Treatment

- Gasifier can be installed in a wastewater treatment facility in several ways:
 - To install instead of digesters (aerobic or anaerobic) in facilities which are currently contemplating digesters
 - To process sludge coming from existing digesters and reduce remaining solids
 - To start an alternative path for a portion of solids which would otherwise go to existing digesters, providing faster, more complete digestion, eventually replacing existing digesters

Table 1: Comparison of CHG to Anaerobic Digestion

<u>CHG</u> <u>AD</u>

Dwell time Minutes 4 to 6 Weeks

Digestion of Organics >99% ~50%

Cost Medium Medium+

Size Small Large

Effluent Water Sterile, Hard to

Reusable Recapture

Water in Sludge 10% 75-80%

Genifuel

Example: A Mid-Size Utility, 2008

Influent flow, daily average	32.9 MGD	SLC Data, million gallons per day
Solids sent to digesters	6,527 t/y	SLC Data, dry metric tonnes
Solids after digesters	3,223 t/y	SLC Data, dry metric tonnes
Solids removed by digestion	50.6%	Calculation
Total Volatile Suspended Solids	86.15%	SLC Data
Non-volatile Solids (Inorganics/Ash)	13.85%	Calculation
Cost of natural gas	6.00 \$/MCF	From Variables worksheet
Cost of electricity	0.08 \$/kWh	From Variables worksheet
Cost to operate digesters inc. capital	500,000 \$/y	Estimate
Total profit from electricity production	392,357 \$/y	From P&L
Avoided cost to remove solids	182,230 \$/y	From above
Avoided cost to operate digesters	500,000 \$/y	From above
Capital cost for gasifier	1,932,656 \$	Does not include site engineering
Payback period	1.8 y	Calculation
Total annual savings from gasification	1,074,587 \$/y	Calculation

Benefits and Conclusion

- Several important wastewater treatment benefits
 - Waste management—almost eliminate solids
 - Re-use gasifier water for irrigation
 - In long term, can reduce footprint of treatment facility
- Proven at a skid-mount scale
- Output gas can be used as medium-BTU fuel to generate electricity
- Capital cost payback in less than two years, with large annual savings thereafter
- <u>Conclusion:</u> CHG gives significant financial and environmental benefits in wastewater treatment

