

CHG: Today's Lowest-Cost Biofuel Process

January 2011

Overview of Gasification Process

- Catalytic Hydrothermal Gasification (CHG) is a wet process (up to 90% water) which produces methane in a single step
- Feedstock is any organic material made into slurry
- Reactions are fast (< 1 hour) and complete (>99%)
- Process developed over 30-year period at Pacific Northwest National Laboratory (PNNL), a DOE National Lab, by Doug Elliott and others
- Genifuel is licensed for commercialization
- Member of NAABB consortium to gasify algae

Energy from CHG Gas Production

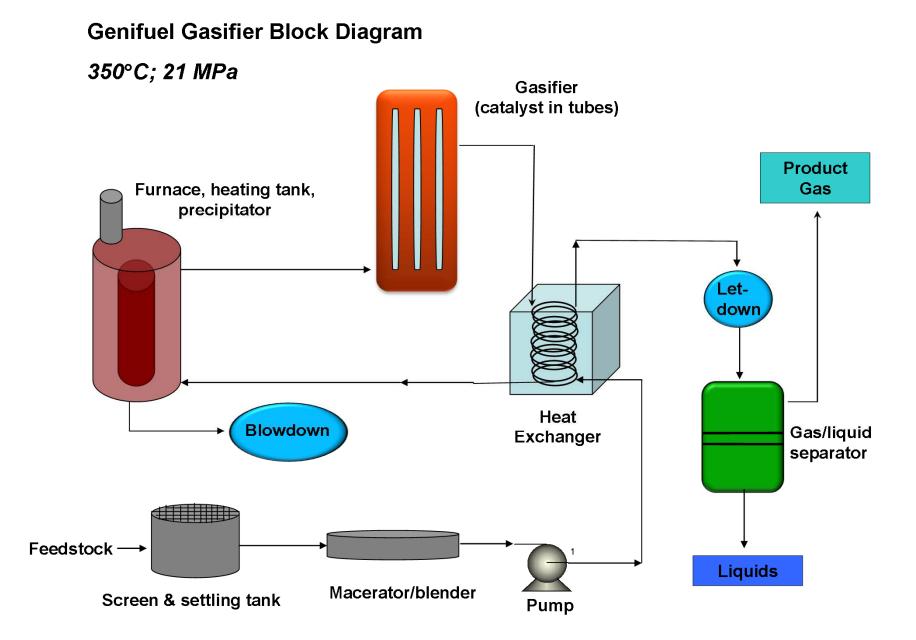
- Gas produced is mostly methane and carbon dioxide; no nitrogen, sulfur or siloxanes
- Gas can be burned directly as medium-heat fuel
 - App. 24 MJ/m³ (620 BTU/ft³)
 - Engines, turbines, and fuel cells can accept this gas
- Alternatively, can remove CO₂ to get pure methane (renewable natural gas or RNG)

- App. 38 MJ/m³ energy content (1020 BTU/ft³)

• Gasifier is compact and can be co-located at the feedstock source to reduce transport of wet stock

Feedstocks

- In the wet slurry, water carries the solids and is also a reactant
- Operation at 21 MPa (3,000 psi) and 350°C (660°F)
- Solids in slurry can be between 1% and 40%, but optimum range is between 10% and 20%
 - Feedstocks in this range flow well, can be pumped easily, and allow for better sizing of machinery



Feedstocks (cont.)

- Wide variety of wet feedstocks are usually available in large quantities
- Algae is an ideal feedstock material—easy to make into slurry
 - Lipid-extracted algae (LEA) can be used, giving a second fuel stream in addition to lipid-based fuels

Simplified Process Diagram

Skid-Mounted Gasifier Test Unit

CHG Pilot Plant Design

• Current design for Pilot Plant will gasify 10 metric tons of wet biomass/day at 15% solids

- Follow-on design will be 10x larger

- This size will produce 500 m³ (18,000 ft³) of net methane (after 10% internal use) per day
 - This amount of methane will power a 100 kWe generator 24 hours/day
 - Or could store gas and generate 200 kWe for 12 h/d
- At 30 g/m²/d productivity, algae feedstock would require 4.5 ha (11 acres) of ponds to supply feed

CHG Value Addition to Algae Biofuels

- If harvest 2 t/d dry algae with 25% lipids, then:
 - Lipid production is 500 kg/d, or 143 gal/d
 - Lipid-Extracted Algae (LEA) is 1.5 t/d dry mass
- CHG will yield 500 m³/d net product methane from 1.5 t/d dry LEA mass
- Value of the products:
 - Lipid value @ 3.00/gal = 429/d
 - Methane yields electricity @ 0.12/kWh = 261/d
- Therefore, CHG increases biofuel value by 60%

CHG Energy Bonus to Algae Biofuels

- For same conditions as previous slide:
- Algae oil produces 143 gallons of biodiesel
 - Energy content = 16.9 million BTU's
- Remaining algae biomass (LEA) produces 500 m³ of net methane
 - Energy content = 18.0 million BTU's
- Therefore gasification of algae biomass more than doubles energy production from harvested algae

Cost of CHG Methane vs. Algae Lipids

• Cost of biodiesel from algae

- Now: \$30 \$300 per gallon (hard to get real data)
- 3-5 years: \$10 per gallon
- 5-10 years: \$3 per gallon
- Note: Some algae biodiesel companies forecast a shorter timeframe for their cost reductions

• Cost of CHG Methane

- Now: App. \$1 per GGE (gallon of gasoline equivalent)

Scope of Algae Biofuels

- If algae were used to produce 5% of US liquid fuel use, then would need to produce:
 - -5% x 200 billion gallons per year = 10 billion gal/y
 - This is roughly the scope of corn ethanol production
- If algae productivity is:
 - Algae growth 30 g/m²/d average for full year
 - Lipid fraction is 25% of the algal mass
- Then
 - Would need 1.2 million hectares or 3 million acres of algae ponds (4,700 square miles of ponds).

Feedstocks

- Beer fermentation bottoms
- Corn ethanol fermentation bottoms
- Food processing plant wastes
- Algae fuel residuals (lipid-extracted algae)
- Water weeds from remediation programs
- Dairy wastes (manure, processing wastes)
- Wastewater solids
- Many others

CHG World Feedstocks Electricity Production in TWh*

FEEDSTOCK	WORLD	USA
Cattle Manure	280	18
Dairy Cow Manure	140	9
Pig Manure	112	7
Food Proc. Waste	382	67
Algae Bottoms	254	57
Wastewater Solids	21	8
Beer Bottoms	10	2
Other**	18	7
TOTAL	1,218	175

* TWh is terawatt hours. Terawatt = 1×10^{12} watt; assumes 42% efficiency ** Other includes barley ethanol bottoms, water plant remediation, etc.

CHG Potential Output in Perspective

- Worldwide CHG production could equal (2010):
 - 8.2% of fossil natural gas production
 - 6.3% of electricity production
 - 3.5 times the electricity produced by wind
- Like wind, the source of energy (feedstock) is free, or in many cases even less since it avoids costs of disposal and/or environmental cleanup of wastes
- CHG power is base load and dispatchable--higher value than wind power
- Production is highly distributed throughout world

Other Gasification Technologies

- Two existing technologies also provide alternate forms of gasification
 - Anaerobic Digestion (Biogas)
 - Thermal Gasification to Synthesis Gas (Syngas)
- Both differ in significant ways from CHG, with CHG offering a number of process advantages
- Additional advantage of CHG is that plant nutrients in the feedstock are recovered and can be recycled for new growth (i.e. fertilizer)

CHG Compared to Anaerobic Digestion

COMPARISON	CHG	AD
Organic Conversion	>99%	40-50%
Dwell Time	< 1 hour	20-40 days
Material Remaining	Almost none	50-60% of feedstock
Quality of Effluent	Sterile	Not Sterile
Size	Small	Very Large
Operation	Consistent, Stable	Hard to Balance
		Genifuel –

CHG Compared to Syngas Gasification

COMPARISON	CHG	SYNGAS
Feedstock	Wet	Dry
Temperature	350°C	850°C
Gas Produced	Methane (CH ₄ , CO ₂)	Syngas (H ₂ , CO, CO ₂)
Tars	No	Yes
Size	Small	Large
Energy Yield	90%	60%
		Genifuel —

CHG Conclusion

- Best method available today to make renewable fuel or electricity from wet biomass
- Makes substantial contribution to energy balance
- Based on more than 30 years of well-documented development and tested with many feedstocks
- Performance will be documented through NAABB consortium

