

CHG: Today's Lowest-Cost Biofuel Process

September 2010

Overview of Gasification Process

- Catalytic Hydrothermal Gasification (CHG) is a wet process (up to 90% water) which produces methane in a single step
- Feedstock is any organic material made into slurry
- Reactions are fast (< 1 hour) and complete (>99%)
- Process developed over 30-year period at Pacific Northwest National Laboratory (PNNL), a DOE National Lab, by Doug Elliott and others
- Genifuel is licensed for commercialization

Energy from CHG Gas Production

- Gas produced is mostly methane and carbon dioxide in 60/40 mix; no sulfur or silanes
- Gas can be burned directly as medium-heat fuel
 - App. 24 MJ/m³ (620 BTU/ft³)
 - Engines, turbines, and fuel cells can accept this gas
- Alternatively, can remove CO₂ to get pure methane (renewable natural gas)

App. 38 MJ/m³ energy content (1020 BTU/ft³)

• Gasifier is compact and is co-located at the feedstock source to reduce transport of wet stock

Feedstocks

- In the wet slurry, water carries the solids and is also a reactant
- Operation at 21 MPa (3,000 psi) and 350°C (660°F)
- Solids in slurry can be between 1% and 40%, but optimum range is between 10% and 20%
 - Feedstocks in this range flow well, can be pumped easily, and allow for better sizing of machinery
- Algae is an ideal feedstock material—easy to make into slurry
 - Lipid-extracted algae (LEA) can be used, giving a second fuel stream in addition to lipid-based fuels

Typical Feedstocks

- Algae fuel residuals (lipid-extracted algae)
- Beer fermentation bottoms
- Corn ethanol fermentation bottoms
- Food processing plant wastes
- Water weeds from remediation programs
- Dairy manure
- Wastewater solids
- Many others

Other Gasification Technologies

- Two existing technologies also provide alternate forms of gasification
 - Anaerobic Digestion (Biogas)
 - Thermal Gasification to Synthesis Gas (Syngas)
- Both differ in significant ways from CHG, with CHG offering a number of process advantages
- Additional advantage of CHG is that plant nutrients in the feedstock are recovered and can be recycled for new growth (i.e. fertilizer)

Skid-Mounted Gasifier Test Unit

CHG Pilot Design

• Design for Pilot Plant will gasify 10 metric tons of wet biomass/day at 15% solids (1,500 kg/d dry)

- Follow-on designs will be 5x and 10x larger

- This size will produce 500 m³ (18,000 ft³) of net methane (after internal use) per day
 - This amount of methane will power a 100 kWe generator 24 hours/day
 - Or could store gas and generate 200 kWe for 12 h/d $\,$
- At 30 g/m²/d productivity, 10 t/d wet 15% algae would require 4.5 ha (11 acres) of ponds

CHG in the Algae Biofuels Process

- If harvest 2 t/d dry algae with 25% lipids, then:
 - Lipid production is 500 kg/d, or 143 gal/d
 - Lipid-Extracted Algae (LEA) is 1.5 t/d dry mass
- CHG will yield 500 m³/d net product methane from 1.5 t/d dry LEA mass
- Value of the products:
 - Lipid value @ 3.00/gal = 429/d
 - Methane generates electricity worth \$261/d
- Therefore, CHG increases biofuel value by 60%

Conclusion

- CHG can make substantial contribution to algae fuel economics
- CHG Pilot Plant is funded by DOE grant as part of the NAABB consortium
- Design and engineering is being performed now, with construction in 2011
- Demonstration will take place at location of algae production which yields adequate feedstock